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In the paper [1] a theorem was established which reduced the question of the
stability of stationary motion {(in particular, equilibrium) of a rigid body
with a cavlity wholly or partially filled with an ideal or viscous fluid to
the problem of the minimum of the potentlal energy. The surface tension of
the fluid was not taken into account in the paper. However, in a number of
cases, particularly under zero-gravity conditions, the inclusion of surface
tension may prove to be significant [2]. Theorems on the stability of equi-
1librium and stationary motion of a rigid body containing a cavity filled with
a fluid possessing surface tension are proved below.

1. Let us imagine & rigid body having a simply connected cavity to be
constrained by some stationary frictionless connections, or to be fr#:. We
denote by ¢; (=1, 2,..., n; n<6), the Lagrangian coordinates deiining the
position of the rigid body in a fixed system of coordinates 0,¢n{ . Let
there be acting on the body given potential forces possessing & force func-
tion, which we write as U{g,,...,g,). In addition to the fixed coordinate
system, we will consider also a moving system of coordinate axes (Oxyr ,
rigidly fixed to the rigid body. We assume that the cavity of the body is
completely filled with two homogeneous, incompressible, ideal, immiscible
fluids 1 and 2, which have surface tension and are subjected to body forces
with potential ¢, (2, n, ¢) .

We denote the density by p,, the pressure by p,, the volume by r,, and
the area of the surface of each of the flulds by S, (1 =1, 2). Qenerally
speaking, S,= S,g+ 0,5, where S,, 18 the area of the dividing surface of
the fluids, and 0,5 18 the area of the surface of the walls of the cavity
wetted by the gth fluid. We denote the line of intersection of the dividing
surface with the walls of the cavity by ¢ , and henceforth we shall assume
for simplicity that in the nighborhood of this line the surface of the walls
of the cavity have no sharp edges. However, the case may arise where one of
the fluids is completely surrounded by the other fluid and does not come into
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contact with the walls of the cavity. In this case the line ¢ does not

exist, and the area of the surface of the inner flyid is §;= &, .

We note that the problem as formulated includes the case where the cavity
is partially filled by a homogeneous incompressible fluid. In this case the
free surface of the fluld §,, borders either on air, in which the pressure
Pa 1s constant, or on vacuum, where the pressure p, 1s taken to be zero.

Following Gauss, we assume that due to the contact of two different media
along a certain surface there will be tensile forces having a potential equal
to the product of the area of the surface of contact and the coefficient of
surface tension a, (£=1,2; r=1,2,3) [3] which depends on the nature of-both
media. Obviously a3 = Gy

As 13 well known (4], the form of the differential equations of motion of
the fluid 1s independent of the presence or absence of the surface tension
forces, which however affect the form of the boundary condltions on the sur-
face dividing the fluids. The boundary conditions, as well al the equations
of motlon of the system, may be derived from the princlple of least action
in the Hamilton-Ostrogradskii form (5). According to this principle, for any
possible motion of the system

1)

\[37 + 3 (X88, + Yibn, + 2.88) |t = 0 (1.4)
ty v

where T 1is the kinetic energy of the system, X,, Y, Z, are the projec-
tions of the active forces on the fixed axes, § 1is the variational symbol
(for the change in a possible displacement) for the corresponding quantity,

and 6§v=6nv=6§v=-0 for t=1t, t=1

With the above assumptions regarding the forces acting on the system, the
total work done by these forces in a virtual displacement becomes

Z (X088, + Y,bn, + Z,8L,) = — W — @,,85,, — a;380,5 — az300,

where
V=— U—Plg Uld"l"'PzS U,dr,

Ty s
denotes the potential energy of the external forces acting on the system.

It 1s not difficult to show that [3)]

88w = { (g + ) onds + {oxdo, 80,y = — 80y, = (bdo  (1.2)

12 o [}

Here R, and R, denote the principal radii of curvature of the surface
S, at a given point, and are considered positive if the corresponding center
of curvature lies on the same side of the surface as the fluid 1, and nega-
tive in the opposite case;

8 = 8r.n, &%, = dr.m;, duy = Or.n,
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where #&r 1s a possible displacement of a point of the surface §, or the
line o relative to the rigid body, n 1s the unit outer normal to the sur-
face §,, n, and n, are the unit outer normals to the contour ¢ of the
surfaces S, and ¢, , lying in the respective tangent planes to these sur-
faces. It 1s obvious that for the portion §,; of the surface §, the vec~
tor n 18 the inner normal. On the surface o0;3, &x = O owing to the
impenetrability of the rigid wall. We denote the angle between the normals
n, and n, by 8 . It is easily seen that

O, = Ox, cosP (1.3)

Taking into account the continuity conditions for the fluld and introdu-
cing the undetermined multipliers px(x, Ys Zs t) which define the hydrody-
namic pressure, we obtain from (1.1) the equations of motion of the system
[5] (which are not set down here because they are not required in the sub-
sequent analysis), as well as Equaticn
tl
S {g [If1 -—pz—alz(?—% + —ii?:)]éxds ~——g(aucosev{—ocw——oe%)ﬁxgdc} dt =0
t

s S p

Owing to the arbitrariness of the possible displacements of a fluid par-
ticle (arbitrary to the extent that they satisfy the continuity equation),
we obtain Laplace's formula [4] for the pressure on the dlviding surface of
the fluids

1 1
P1— Pa =G (E -+ 7{;) (1.4)
and also the formula for the edge angle 8
cos 9 =((123_(113)/Cl12 (15)

which must be satisfled at an arbitraery instant of time. We note that For-
mula (1.5) has exactly the same form as the formula for the edge angle for
a fluid in equilibrium, which 1s usually obtained either from the principle of
virtual displacements [ 3], or from the condition of equilibrium of the three
surface tension forces [4]. Consequently, the moving surface divlding the
two dissimilar fluids forms the same angle with the rigid wall as in equi-
1ibrium, if of course the quantities q,, are the same constants.

For alr the coefficient a_, is usually taken to be zero, and Formula

. the f
(1.5) assumes the form 08B = — agq/ dyy (1.6)

Purthermore, we will consider only the cases where the motion of the rigid
body is continuous, whlle the motion of the fluid is accomplished in a smooth
manner, so that the coordinates of a fluild particle are continuous functions
of their initial values and time.

In view of the assumptions that the fluid 1s ideal and that the con-

straints imposed upon the rigid body are statlonary, according to the theo-
rem regarding the kinetic energy of the system we have

dT = — dV — ;30515 — 019075 — Glpad0yg



Stabllity of motion of a rigld body containing a fluid 911

whence we obtain the energy integral

T + V + a12S12 + alao'ls + azsczs = const (1.7)

Note . The integral (1.7) may also be obtained -from the equations of
motion of the system, and the following equation may be derived by the usual

method [5]:
La+n= —§ (Pr — po) u,dS
13
where 1y, denotes the projection of the relative velocity of the fluid on
the normal n to the surface S12 » Using Pormulas (1.2) to (1.5), we imme-
diately obtain from this equation the integral (1.7).

Thus under the assumed conditions the total mechanical energy cf the sys-
tem, consisting of the kinetic energy T of the rigid body and fluid, the
potential energy ¥ of the external forces applied to the system, and the
surface energy 39813 + 013613 4 033023, of the fluid, remains constant
throughout the motion.

8. We denote the potential energy of the system by F =V+ a.,S,; -+
+ o15618 -+ 230s3. According to the principle of virtual displacements Equa-

tion 8F = 0 (2.1)

1s the condition of equilibrium of the rigid body with fluild in its cavity.
Transforming from the absolute coordinates £, n and ( of a fluld parti-
cle to the relative coordinates x, y and 2z , we write the potential func-
tion of the body forces in the form U, (x, v, 2, 9, ), retaining the previous
notation.

Writing Equation (2.1) in an explicit form, we have

n 2
j=1 i=1 T

+ amg (7% +7%)buds =0

sli

In view of the independence of 8¢, and &x, by, 8z , we immediately
obtain from this equation the equation of equilibrium of the rigld body and
fluid

— =20 G=1,...,n) (2.2)

The remaining part of the equality leads to the equation of the dividing
surface §;3 of the fluids in equilibrium. If we use Green's formula and
take into account the incompressibility condition, we obtain

Eap‘g (aUlﬁx—{—aU‘G +6U’62)dt,—ocug (-;—1—}— -}—;-;)6de=

=1 12

=S [(91_ Pa) Uy — 0y (%‘; +%2)]6xds =0

SII
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Conservation of volume of the fluid requires that the function &x satis-
fy the condition
Sma=o
oA

while it 1is arbitrary elsewhere; hence we obtain from the latter equality
the equation of the dlviding surface of the fluids in equilibrium

(pr— pa) Uy —ay, (7:; + j%;) == const (2.3)

We shall now consider the case where the constraints applied to the rigid
body allow rotation of the whole system as a single rigid body around some
fixed straight line, for example, the (-axls, and the forces acting on the
system exert no moment about this line. In this case the kinetic and poten-
tial energy of the system clearly do not depend on the angle of rotation ¢,
of the body about the (-axis, and the equations of motlion have the integral
(5]
Gy = k = const (2.4)
where GC 1s the component of the angular momentum of the system along the
¢{-axis,

We also introduce the coordinate system 0,2,n,{ which rotates about:the
(-axis with angular velocity w . If the value of w 1is chosen such that
at an arbitrary instant of time the relatlon

of =k (2.5)
is satisfied, then the energy integral (1.7) may be written in the form [1]
1 i
T, + 5T + V + 15513 + %13013 + 223023 = const (2.6)

Here T, denotes the kinetic energy of the system in 1ts motion relative
to the coordinate axes 0,8, n,{ , while J 18 the moment of lnertla of the
system about the (-axis.

We introduce the notation

W= ”%‘ 'IE.; + V + @,55:2 + a13613 + 33028 (2.7)

for the change in potential energy of the system,
From the d'Alambert-Lagrange principle [1], it follows that the Equation
3W =0 (2.8)

is the condition for the establishment of the motion in which the whole sys-
tem rotates as a single rigid body about the (-axis with angular veloclity
Wwe= Xo/Jo» Where x, and J, are the values of the constant x and the mo-
ment of inertia J for which such a motion is set up.

From condition (2.8) we easily obtain Equations
ow 1

ar | ov .
P = T T ™ g e =0 U=t (2.9)
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for the coordinates g, of the rigid body in its stationary motion, as well
as the egquation of the dividing surface of the fluids in this motion

(O Pz)[U1 + -;—ﬂoo’ (8 + 'q’)] — ay (—;1,—1 + —1;—’) =const (2.10)

For wy= 0 , Equation (2.10) takes the form of Equation (2.3).

The constants appearing on the right-hand sides of Equation {2.3) or
{(2.10) are determined from the known values of the radil of curvature &,
and force function U, at any point of the dividing surface [3]).

The formula for the average curvature 1/R, + 1/R, of a surface determined
from the coefficients of the first and second guadratic forms of Gauss [6]
is well-known in differential geometry). Equations (2,3) and (2.10) are thus
the differential equations of the dividing surface of the fluids in equilib-
rium or in stationary motion, the shape of which 1s determined by integrating
these equations. The integrals of Equations (2.?) and (2.10) must satisfy
boundary conditions of the form of (1.5) or (1.6) if the dividing surface
intersects the walls of the cavity. Experiment shows that the angle 0 may
be either an acute or right or obtuse angle, depending on the, nature of the
contiguous media. For a liquid-air surface the angle ¢ is obtuse for a

"nonwetting” wall, and q,5 > O , while for a "wetting" wall @ 1is acute,
and in this case g,3< 0 .

it 1? s/a,3 1> 1, then a line of intersection of the free surface of the
fluld w sh the walls of the cavity does not exist, and the fluid 1s distri-
buted over the whole surface of the walls of the cavity.

Far from the walls of the cavity, the shape of the dividing surface of
the fluids in equilibrium depends on the relations between the magnitudes of
the surface tenslons and the body forces acting on the fluids. Thus, for
example, in a gravitational field the shape of the surface is determined [%]
by the capillarity constant 5 — }fiaTQEE,

3. We now consider the question of the stabllity of equilibrium or sta-
tionary motion of a rigid body with a fluild in its cavity. We shall agree
that by the stability of the present system with an infinite number of de-
grees of freedom, we mean stability with respect to the coordinates ¢, and
velocities ¢, of che rigid body, the kinetic energy of the fluid I;(z),

and the distance 1 of the dividing surface from the equilibrium surface (or
the displacement \/ of the shape of the fluid from the equilibrium shape).
In addition to conditions (2.1) of [1], we require that the inclination of
the initial perturbation in the dividing surface to the equilibrium surface
be sufficiently small at each point of 1ts surface. We shall assume that
the equilibrium surface 1s connected, the direction of its normal varying
continuously for continuous variations of a point on the surface, and that
the curvatures of 1ts principal normal sectlions are everywhere finite. We
shall always choose the distance ! to be smaller than the least of all the
radil of curvature of the normal sections of the equilibrium surface. Under
these conditions the following theorems hold.

Theorem 3.1 . If Expression

F =V + a,,8;5 + 013013 + 23623

has an 1solated minimum JF, for the equilibrium position of the rigid body
and fluid in its cavity, then the equilibrium position 1s stable.
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Theoren 3.2 . If in the state of statlonary motion of the rigid
body with fluild in its cavity Expression

W =

1 ko
5 57— TV + 15810+ 213613 4 ta30as

has an isolated minimum #,, then the steady motion 1s stable.

The minimum of Expression F or W 1s taken to have the same meaning as

in [1], i.e. either with respect to g¢;, I (for > &l), or with respect to
Gi» V-

Proof . We perturb the system from its state of stationary motion,
imparting to its points certain sufficiently small initial displacements and
velocities, Left to 1tself, the system willl continue to move in accordance
with the energy integral (2.6), which may be rewritten in the form

1 k2 — k? 1 k2 — kg2
L e (o) () . — = _— 70
T,+ W+ 5 7 =T + W + 5 700 3.1
where (0) denotes the initial value of the corresponding quantity, and »%
is the value of the integral constant for the perturbed motion.

Let 4 Dbe some arbitrarily small positive number which does not exceed
a given number 1 defining the region of stabllity, which we will In any case
assume to be less than the number 7 which defines the region of minimum ¥
[1]}. We denote by W, the smallest possible value that can be assumed by
the the expression W 1if the absolute value of the distance ] or one of
the coordinates ¢; (= 1,...,n—1) 18 equal to 4 , while the rest of these
quantities and the displacement Y/ satisfy conditlons |qj|<A, |11 A4,
V =>¢l, where clearl W,> W, . We choose the number A "to be so small
that the inequality |W,—#,|<z will be satisfied.

We choose the initial positions and velocities of points of the system
such that the inequality

1 1 1
T WO 4 5 (k* — ke?) (3(—0) —7‘) <W

will be fulfilled for all values which J may assume satisfying conditions
lg;1<4, |14, V> (3.2)

For such a choice of initial conditions, at all subsequent times of the
motion for which the inequalities (3.2) are satisfied, we will have in
accordance with the energy integral (3.1) the inequality

T, +W<Ww, 3.3)

from which it follows that W < ¥, . This inequality will be satisfied at
least until |g,| and |7] exceed the number A4 . But the initial values of
|g,| and |1| were chosen to be less than 4 , and the initlal displacement
v el and since g¢;, I, V vary continuously with time, then |[g,| and |i]

i
can neither exceed 4 nor equal 4 Ybefore that time.

However, the equalities
are impossible under the condition W/>&l 1in view of the inequality (3.3).

Consegquently, if the motion of the system 1is continuous, so that g, [,/ vary
continuously with time, then starting at the initial instant of time, we have

the 1lnequalitles
lg;l <L, gy 1<L, <z, |r?Pi<L, v>e

all of which will continue to be satisfied as long as the last one of them
is observed. Thus Teorem 3.2 is proved. The validity of Theorem 3.1 follows

from the proof.
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We note that a theorem similar to Theorem 3.1 can also be stablished for
the case of relative equilibrium of a rigid body with a cavity fillled with a
fluid possessing surface tension if in addition to the potential forces,
there acts the moment of other forces which are directed along the (-axis,
in which case the angular velocity o of rotation of the body about the
¢(-axis remains constant throughout the motion. Under these conditions the
following theorem [1] 1s valid.

Theorenm 3.3 If in the position of relative equilibrium of the

rigid body and the fluid in its cavity Expression
W, =V 4 015512 + 013613 + 023005 — /0%
has an isolated minimum, then the position of relative equilibrium is stable.

Since condition &W,=0 for w = const 1s equivalent to condition 8¥ =0
for k,= const , 1t 1s easily seen from a stralghtforward argument using the
equallty wJ,= %k, that the position of relatlve equilibrium may be compared
with the stationary motion of the system. It is not difficult to see [1]
that if the expression W, has a minimum for a certain position of relative
equilibrium, then the expression W for the corresponding stationary motion
also has a minimum.

It was assumed above that the fluld was ideal, but Theorems 3.1 to 3.3
remain valld for a viscous liquid as well,

In the case of a viscous fluld the Euler equations are replaced by the
Navier-Stokes equations; the veloclty of a fluld particle in contact with
the walls of the cavity 1s taken to be equal to the velocity of the corre-
sponding point on the wall, and the dynamic condition (1.4) on the free sur-
face 1s replaced by condition [4]

, 1 1
by — 29 1y = (0 — 03/ ®) my + s (7= + 77 ) 7 3.4

where 0,0 and 0,,'? denote the "viscous" stress tensors. Under these
conditions the equations of motion of the system reduce to the equations for
the rate of energy dissipation

d
21 T +V + @Sz + t1s01s + tos30s) = — H1 S D dv) — py S D,dv,
73 T2
where &, is defined by the Navier-Stokes formula [1], and y, is the coef-

ficient of viscosity. Hence for a viscous fluid, in place of the energy
integral (1.7) we have the inequality

T+ V 4 a8z + o1st1s + a0z < T + VIO 4 075850 4 035515 +- csaogs!®  (3.5)

and nothing is changed in the proof of Theorems given above.

In a similar manner one may validate Theorems 3.1 and 3.2 of [1] for a
zisc?us liquld possessing surface tension, taking into account the definition
2.7).

The author thanks N.N. Krasovskii, N.N. Moiseev and G.K. Pozharitskil
for discussions of the present paper.
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